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Abstract. We present results for the density of states, and the band conductivity. of strongly 
modulated lateral-surface superlattices in a magnetic field. The density of states with an energy 
smoothing of 0.4 meV shows roughly periodic oscillations ofthe density of states as the magnetic 
field is varied, comparable in magnitude and period Lo the oscillations seen experimentally in 
the resistance. The oscillations are found to correspond to the perturbed. periodic. cyclotron 
orbits. The band conductivity shows periodic oscillations with a period of one flu quantum per 
unit cell of the periodic potential related to Hofstadter's butterfly, but these are suppressed much 
more strongly than the density of states oscillations by inelastic scattering of the elecbons. 

1. Introduction 

Recent results [1,2] have shown the presence of quantum mechanical effects in the 
magnetoresistance of a 2DEG subject to a strong, periodic potential. By strong, we mean that 
the potential is sufficiently large for the higher parts of the potential to be above the Fermi 
energy of the electrons, producing roughly circular obstacles, referred to as antidots. The 
gross variations of the resistance in such systems have been explained in terms of classical 
mechanics [3,4,5,6j. In this paper we are interested chiefly in the fine structure, on the 
scale of a change in magnetic field of the order one flux quanta per unit cell. This fine 
structure has been interpreted [ I ]  in terms of variations in the density of states. Variations 
in the density of states modulate the scattering rate of the electrons, and so modulate the 
conductivity. The variations in the density of states have been related to the periodic orbits 
existing in the system. 

In this paper we calculate results for the band conductivity and the density of states in 
the regime of the experiments, namely a lattice period of 300 nm, a Fermi energy for the 
elecwons of around 10 meV and a magnetic field from 0 to 1.5 T. For a simplified, hard- 
wall, potential we find relatively simple results, with oscillations in the density of states 
in the region where the cyclotron radius is around half the lattice period appearing as a 
continuation of the Landau leve! structure at higher magnetic fields. For a softer potential 
we find variations of the density of states in this regime on a magnetic field scale consistent 
with the area enclosed by a (perturbed) cyclotron orbit, with similar oscillations continuing 
to higher magnetic fields. At low magnetic fields the band conductivity shows oscillations 
consistent with the presence of Hofstadter's butterfly. 
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2. Model 

With the assumptions of a fixed scattering time and a periodic potential, we calculate the 
longitudinal band conductivity using the formula described recently by Degani and Leburton 

R B S Oakshott and A MacKinnon 

[71: 

where r is the transport scattering time, U, is the group velocity of the mode in the x 
direction, A is the area of the system, and f is the Fermi-Dirac distribution function. For 
simplicity we ignore spin splitting throughout this paper. The general validity and the 
method of solving equation (1) have been discussed in a previous paper [SI referred to 
below as paper I. 

In the following we use a transport scattering time of r = 38 ps, corresponding to a 
mobility of 100mZ/Vs. The quantum relaxation time-that is the time for an electron to be 
scattered out of a plane wave state-is typically about a tenth of the transport relaxation 
time because of the long-range nature of the Coulomb potential [9, IO], and we use values 
of r,, = 6.5 ps and rq = 0.81 ps in the density of states calculations [ l l ]  

There is also a scattering (collisionai) contribution to the conductivity in a magnetic 
field, which we do not attempt to calculate. We do, however, calculate the density of states, 
which is expected to affect the conductivity in two ways. Firstly, the density of states affects 
the inelastic scattering time, and so the scattering conductivity. Secondly, the density of 
states affects the screening in the 2DEG, and so the periodic potential, and the random 
potential from the ionized donors. Since we  are not able to do a self-consistent calculation 
of these effects we present here simply results for the density of states, and do not attempt 
to translate these into variations in the conductivity. In so far as the variations in the density 
of states are small. we expect the consequent fractional variation in the conductivity to have 
a similar order of magnitude to the fractional variation in the density of states. For the 
parameters used here, we have shown I121 that the scattering conductivity is a small part of 
the total conductivity, although, as we find below, variations in the scattering conductivity 
are more robust in the presence of disorder and inelastic scattering than are variations in 
the band conductivity. 

The calculations are done including an imaginary component to the energy, which is 
necessary for the stability of the calculation, and represents an effective scattering time, 
r = R / ( 2  Im(E)). With the imaginary component of the energy taken infinitesimally small, 
our calculation includes contributions to the band conductivity only from propagating modes. 
(By propagating modes, we mean travelling wave states, with a real wavevector.) If we 
use a larger imaginary component to the energy, then the calculation of the conductivity 
includes contributions from evanescent waves. The formula used for the band conductivity, 
is not strictly correct with a finite imaginary component to the energy [ 131 but is sufficient 
to indicate qualitatively what effects should be observable in the band conductivity. The 
calculation of the density of states is correct with a finite imaginary component to the energy. 

All the calculations are done for magnetic fields with a multiple of 4 of a flux quantum 
per unit cell, and with a fixed unit cell for the calculation of 5 by 1 units of the antidot 
potential. We do not take advantage of the reduction in possible unit cell size for the case 
where there is an integer number of flux quanta to each unit cell of the antidot potential. to 
avoid introducing any periodic numerical artifacts into the calculation. The spectrum of a 
periodic system in a magnetic field has long been known to depend on whether the magnetic 
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field has a rational or an irrational number of flux quanta per unit cell. Because of the 
inevitable presence of scattering and imperfections, the physical properties of any system 
are however expected io v a y  continuously with the magnetic field, so that a numerical 
calculation, which is restricted to magnetic fields with a rational number of flux quanta per 
unit cell, can give information about the behaviour of the system in a general magnetic 
field. 

3. Hard-wall antidoUs4ensity of states 

We consider in this section a hard-wall potential, with a potential V = 0 outside circles of 
radius rd arranged on a square lattice (see inset to figure 1). A lattice period a of 300 nm 
is used throughout this paper. 
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Figure 1. Density of states for M antidot lattice with r d / n  = 0.15 and E = 12.6 meV. For 
[he thin line, Im(E) = 0.05 meV. and for the thick line Im(E)  = 0.4 meV. The form of the 
potential is shown in the inset. 
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Figure 1 shows the density of states for a lattice with rdla = 0.2. The results have been 
calculated at a fixed energy of 12.6 meV, and with a magnetic field of from 0 to 32 flux 
quanta per unit cell, equivalent to a maximum field of 1.47 T. For the longer scattering time 
of 6.5 ps the magnetic field resolution is insufficiently fine to resolve all the structure in 
the density of states. For the shorter scattering time of 0.81 ps, equivalent to an imaginary 
component to the complex energy of 0.4 meV, the magnetic field resolution is adequate to 
resolve a11 the structure that survives in the density of states. 

At the top end of the magnetic field range considered, the density of states shows 
oscillations due to the formation of Landau levels, which continue to lower magnetic fields, 
until the cyclotron radius is approximately 0.7~. Unperturbed cyclotron orbits cannot exist 
for smaller magnetic fields, with the exception of a relatively small number of orbits 
enclosing for example four antidots [5 ] .  With the shorter scattering time the energy 
separation of the Landau levels is sufficiently small for this magnetic field that the Landau 
level structure has already disappeared at a higher magnetic field. At a lower magnetic field 
than the main peak of each Landau level, there is some fine structure which is associated 
with edge states circulating round the antidots. 

For larger antidots the individual Landau levels can no longer be observed. Figure 
2 shows the density of states for a lattice with r d / a  = 0.3. The inset shows the Fourier 
transform of the density of states calculated over the range from 10 to 20 flux quanta 
per unit cell and with r, = 0.8 ps. At the shorter scattering time we see approximately 
periodic oscillations in  the density of states with a period of approximately A B  = 0.06 T 
corresponding to one flux quantum through an area of 0 . 7 9 ~ ~ .  which matches the highest 
peak in the Fourier transform. This is the area of the cyclotron orbit for rc = a 12. Note that 
there is no reason why the oscillations in the density of states should be exactly periodic, 
since the area enclosed by the cyclotron orbits is varying as the magnetic field changes. 

We have examined the local density of states (that is the density of states as a function 
of position) at the energy and magnetic field of some of the peaks in the density of states. 
There i s  no sign in the local density of states of spatial features associated with short, 
periodic orbits. This is not unreasonable: the effect of the short, periodic orbits is to provide 
variations in the density of states which are correlated at different energies and magnetic 
fields, and not necessarily to dominate the density of states at any particular energy. Also 
for these hard-wall potentials the degenerate cyclotron orbits dominate the oscillations in 
the density of states, so that there is little spatial modulation of the density of states. 

4. Hard-wall antidots-band conductivity 

We now consider the variations in the band conductivity. Figure 3 shows the band 
conductivity calculated with an infinitesimal imaginary component to the energy. (That 
is there is a scattering time which determines the magnitude of the transport, but there is 
no energy smoothing, and no cut-off to the path lengths contributing to the band structure.) 

We note two features, which also appear for other sizes of antidot and energy. The 
first is a pronounced oscillation with a period of one flux quantum per unit cell. The inset 
to figure 3 shows how these oscillations are aligned with a maximum conductivity for an 
integer number of flux quanta per unit cell. The second is the envelope of the oscillations 
which shows a pronounced minimum for a cyclotron radius of around r, = a /2  before 
showing a peak, and falling off again as the magnetic field is increased further, and the 
cyclotron radius becomes smaller than the separation between the dots, so that the electrons 
are effectively localized. 
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F i w r e  2. Density of states for an antidot lartiee wilh rd/a = 0.30 and E = 12.6 meV. For the 
thin line, Im(E) = 0.05 meV. and for the thick line Im(E) = 0.4 meV. A Fourier transform of 
the data between approximately B = 0.5 T and B = I Tis shown in the inset. 

The periodic oscillation is a manifestation of Hofstadter’s butterfly [ 141. For a magnetic 
field with a non-integral number of flux quanta per unit cell there are extra gaps in the band, 
reducing the group velocity, and the conductivity. For different energies the heights of the 
peaks vary, and there can be peaks in the conductivity for non-integral numbers of flux 
quanta. However, since the peaks in the conductivity are tied to the number of flux quanta 
per unit cell, rather than merely being periodic, energy smoothing should not des@oy this 
structure. However, while energy smoothing will not destroy the oscillations, a level of 
scattering appropriate for present experimental structures does. 

The general behaviour of the band conductivity with a dip in the conductivity before a 
rise, and a final falling off as the magnetic field is increased is reminiscent of the behaviour 
in Weiss’s experiments [5 ] .  Note that the results here are for the conductivity rather than 
the resistivity, so that there is no contribution from the Hall effect in our results, whereas 
in the experiments the resistance falls at high magnetic fields due to the Hall effect. 

Figure 4 shows the band-conductivity calculated with a finite imaginary component to 
the energy corresponding to a scattering time of rq = 6.5 ps equivalent to a length of 
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Figure 3. Band conductivity for an antidot lattice with rd f n  = 0.25 and E = 12.6 meV. Shown 
in the inset is an expanded view of the data for small magnetic fields. 

uFr = 1600 nm, where UF is the group velocity at the Fermi energy. Although this is 
significantly larger than the lattice period of 300 nm, there is no sign left of the periodic 
oscillations. Note that oscillations in the density of states with a smaller flux periodicity 
than the Hofstadter oscillations can still be seen with this scattering time. The Hofstadter’s 
butterfly structure is more sensitive to the scattering because there are in general no periodic 
classical paths enclosing integer numbers of flux quanta creating the structure, rather the 
structure reflects the long-range periodicity of the system. We note too that the inclusion of a 
finite scattering time in the band condwtivity calculation leads to a conductivity that reduces 
steadily as the magnetic field is increased, the dip in the conductivity around r, = a/2  does 
not survive. 

5. Soft-potential antidots 

The results for the hard-wall potentials have shown oscillations in the density of states 
comparable to those reflected in the resistance seen experimentally. The roughly periodic 



Conductivity of antidot latices 

0.5 1 
Magnetic Field ( T ) 

152s 

5 

I I I I I I 
0 1 2 3 4 

Lattice Period I Cyclotron Radius 

I I I I I I I I  
0 5 10 15 20 25 30 

Flux Quanta 
Figure 4. Band conductivity for an antidot lanice with rd fa = 0.25 and E = 12.6 meV. 
AD imaginary component to the energy of 0.05 meV has been included in the calculation, 
corresponding 10 a quantum scattering rime of 6.5 ps. 

oscillations in the density of states appear as a continuation of the Landau level structure 
in the region where the cyclotron radius is about half the lattice spacing. Experimentally 
a softer potential is more realistic, and will remove the degeneracy between the cyclotron 
orbits. We have calculated results for some of the potentials used by Weiss et a1 [ I ]  for 
their semi-classical calculations. We show results here for an electrostatic potential given 
by V ( x , y )  = Vosinz(nx/a)sin2(ny/u), where VO = 15.2 meV. We use an energy of 
EF = IO meV. which gives a dot whose radius (defined as V ( r ,  0) = E P )  is 0 . 2 ~ .  

Figure 5 shows the results for the density of states. The potential is strong enough to 
have hidden all direct signs of the Landau levels, whose spacing at the highest magnetic 
field considered is fiw, = 2.6 meV, The inset shows the Fourier transform in the region 
from IO to 20 flux quanta. The peak of the Fourier transform at a reciprocal period of 0.64 
corresponds to an area slightly smaller than an unperturbed cyclotron orbit, and is close to 
the period of 0.6 we find numerically for a closed orbit going round a maximum of the 
potential. This is an orbit labelled by ‘b’ in Weiss’s paper [l]. As for the hard-wall case 
we see no particular signs of these periodic orbits in the local density of states taken at 
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Figure 5. Density of states for a soft-wall lanice. The parameters of the potential are described 
in the text. For Ihe thin line, Im(E) = 0.05 meV. and for the thick line Im(E) = 0.4 meV. The 
inset shows the Fourier transform of the thick line in the range from 10 lo 20 flux quanta per 
unit cell. 

particular maxima in the density of states. 
The behaviour of the band conductivity i s  shown in figure 6. The Hofstadter’s butterfly 

oscillations are apparent, as for the hard-wall case. The inset shows the Fourier transform 
of the data. Calculations including a finite imaginary component to the complex energy 
show that, as for the hard-wall lattice. this periodic structure is suppressed by scattering 
much faster than the oscillations in the density of states. 

6. Summar). 

We have presented results for the density of states and the band-conductivity of lateral 
surface superlattices in magnetic fields for the case of a strong modulating potential. The 
results confirm the existence in the energy-averaged density of states of approximately 
periodic oscillations associated with the (perturbed) cyclotron orbits. Calculations of the 
band conductivity with an infinitesimal imaginary component to the energy show strong 
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Figure 6. Band conductivity of the sofi-wall lattice described in the text. The inset shows the 
Fourier msform of the data 

periodic oscillations with a period of one flux quantum to each unit cell of the potential, 
which we associate with the extra splittings introduced into the band-swucture when there 
is a non-integer number of flux quanta per unit cell. Although this structure has a similar 
flux periodicity to the energy-smoothed density of states, it is suppressed by an imaginary 
component to the energy, representing the effects of both inelastic scattering and energy 
averaging, and is not likely to be seen experimentally for structures available at the moment. 

The results for the density of states include an energy smoothing equivalent to 0.4 meV. 
This is much larger than typical estimates of the potential due to random donors [15] and 
suggests long-range fluctuations in the device properties, or possibly enhanced disorder at the 
edge of the antidots where there are few electrons to screen the disorder, may be important. 
Results for smaller ways should show more structure if long-range fluctuations are 
important, although edge effects will become important as seen in Kirczenow’s calculations 
Wl. 
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